If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+40x-768=0
a = 2; b = 40; c = -768;
Δ = b2-4ac
Δ = 402-4·2·(-768)
Δ = 7744
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{7744}=88$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(40)-88}{2*2}=\frac{-128}{4} =-32 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(40)+88}{2*2}=\frac{48}{4} =12 $
| (2/7)x+(4/7)=-(6/7) | | Y+(y+1)=1.1 | | 3x-12x=-27 | | (2/7)*x+(4/7)=-(6/7) | | 3a-3=5a-4 | | 46-w=287 | | 5x+10-3x=6+x-8 | | 4y-14=46 | | 20=5r^2 | | x/4+x=30 | | 48(m+3)-102=6(8m+7) | | 30x5=54 | | m/8=24/64 | | u+2.81=9.29 | | 400+j÷1/6=2000 | | 4+2x=4(5-x) | | 6y-9y=36 | | X2-8x-4=0 | | 2/3x=1/5x+45 | | 9090=x+.1x | | 4n+5=2n+13 | | -3+10=2n | | 3|x-4|=18 | | 2(9)2+8y=121.5 | | 9=3x-2(3x-9) | | -(5x+2)=32 | | 130+40*n=270 | | h+10=-4h | | 11x=2+7x+9(-2x-5) | | 2x^2+8x-180=0 | | 4x+6(2x+1)=2x+20 | | -4+7z=6z |